111 research outputs found

    Infection and Pulp Regeneration

    Get PDF
    The regeneration of the pulp-dentin complex has been a great challenge to both scientists and clinicians. Previous work has shown that the presence of prior infection may influence the characteristics of tissues formed in the root canal space after regenerative endodontic treatment. The formation of ectopic tissues such as periodontal ligament, bone, and cementum has been observed in the root canal space of immature necrotic teeth with apical periodontitis, while the regeneration of dentin and pulp has been identified in previously non-infected teeth. The current regenerative endodontic therapy utilizes disinfection protocols, which heavily rely on chemical irrigation using conventional disinfectants. From a microbiological point of view, the current protocols may not allow a sufficiently clean root canal microenvironment, which is critical for dentin and pulp regeneration. In this article, the significance of root canal disinfection in regenerating the pulp-dentin complex, the limitations of the current regenerative endodontic disinfection protocols, and advanced disinfection techniques designed to reduce the microorganisms and biofilms in chronic infection are discussed

    Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy

    Get PDF
    We report graphitic carbon growth on crystalline and amorphous oxide substrates by using carbon molecular beam epitaxy. The films are characterized by Raman spectroscopy and X-ray photoelectron spectroscopy. The formations of nanocrystalline graphite are observed on silicon dioxide and glass, while mainly sp2 amorphous carbons are formed on strontium titanate and yttria-stabilized zirconia. Interestingly, flat carbon layers with high degree of graphitization are formed even on amorphous oxides. Our results provide a progress toward direct graphene growth on oxide materials

    Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition

    Full text link
    A single-layer graphene is synthesized on Cu foil in the absence of H2 flow by plasma enhanced chemical vapor deposition (PECVD). In lieu of an explicit H2 flow, hydrogen species are produced during methane decomposition process into their active species (CHx<4), assisted by the plasma. Notably, the early stage of growth depends strongly on the plasma power. The resulting grain size (the nucleation density) has a maximum (minimum) at 50 W and saturates when the plasma power is higher than 120 W because hydrogen partial pressures are effectively tuned by a simple control of the plasma power. Raman spectroscopy and transport measurements show that decomposed methane alone can provide sufficient amount of hydrogen species for high-quality graphene synthesis by PECVD.Comment: 22 pages, 6 figure

    cAMP signaling inhibits radiation-induced ATM phosphorylation leading to the augmentation of apoptosis in human lung cancer cells

    Get PDF
    Background: The ataxia–telangiectasia mutated (ATM) protein kinase plays a central role in coordinating the cellular response to radiation-induced DNA damage. cAMP signaling regulates various cellular responses including metabolism and gene expression. This study aimed to investigate the mechanism through which cAMP signaling regulates ATM activation and cellular responses to ionizing radiation in lung cancer cells. Methods: Lung cancer cells were transfected with constitutively active stimulatory G protein (GαsQL), and irradiated with γ-rays. The phosphorylation of ATM and protein phosphatase 2A was analyzed by western blotting, and apoptosis was assessed by western blotting, flow cytometry, and TUNNEL staining. The promoter activity of NF-κB was determined by dual luciferase reporter assay. BALB/c mice were treated with forskolin to assess the effect in the lung tissue. Results: Transient expression of GαsQL significantly inhibited radiation-induced ATM phosphorylation in H1299 human lung cancer cells. Treatment with okadaic acid or knock down of PP2A B56δ subunit abolished the inhibitory effect of Gαs on radiation-induced ATM phosphorylation. Expression of GαsQL increased phosphorylation of the B56δ and PP2A activity, and inhibition of PKA blocked Gαs-induced PP2A activation. GαsQL enhanced radiation-induced cleavage of caspase-3 and PARP and increased the number of early apoptotic cells. The radiation-induced apoptosis was increased by inhibition of NF-κB using PDTC or inhibition of ATM using KU55933 or siRNA against ATM. Pretreatment of BALB/c mice with forskolin stimulated phosphorylation of PP2A B56δ, inhibited the activation of ATM and NF-κB, and augmented radiation-induced apoptosis in the lung tissue. GαsQL expression decreased the nuclear levels of the p50 and p65 subunits and NF-κB-dependent activity after γ-ray irradiation in H1299 cells. Pretreatment with prostaglandin E2 or isoproterenol increased B56δ phosphorylation, decreased radiation-induced ATM phosphorylation and increased apoptosis. Conclusions: cAMP signaling inhibits radiation-induced ATM activation by PKA-dependent activation of PP2A, and this signaling mechanism augments radiation-induced apoptosis by reducing ATM-dependent activation of NF-κB in lung cancer cells.This study was supported by a National Research Foundation (NRF) grant funded by the Korea government (MEST) (No. 2007–2001258), by Basic Science Research Program through the NRF funded by the Ministry of Education, Science and Technology (2012R1A1A2044374), and a grant from the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (0720540).Peer Reviewe

    Critical value of symmetry breaking parameter in the phase transition of decay rate

    Full text link
    Phase transition of decay rate from quantum tunneling to thermal activity regimes is investigated in (3+1)-dimensional field theories with symmetry breaking term fϕf\phi. By applying the two independent criteria for the sharp first-order transition to the same model, the upper and lower bounds of critical value of the symmetry breaking parameter are obtained. Unlike two dimensional case continuum states of the fluctuation operator near sphaleron solution play an important role to determine the type of transition.Comment: Several mistakes including figures are corrected. Accepted version in Phys. Lett.
    corecore